

Challenges for the Future Energy in Korea

Nov. 22, 2016

Seung-Il Moon President of KESRI

Instructor Profile

- •B.S. Electrical Engineering, SNU
- •M.S., Ph.D. Electrical Engineering, OSU
- •Professor, SNU EE
- •Member, Korea Electrical Safety Corporation-Advisory Committee
- •Member, Committee on Green Growth
- •Member, National Energy Committee of Korea
- •Executive Director, Korea Smart Grid Institute
- •Chairman, Electric Power Policy Committee of Korea
- President of KESRI

Development of Korean Power Network

Korea, Now

- Highly Concentrated
- Isolated Power Island

World No.1 Electric Power Quality

	Korea	U.S.A	Japan	Rank
Voltage Maintenance (%)	99.93 ('12)	-	99.9 ('93)	1
Power outage time (min)	10.88 ('14)	120 ('09)	11 ('07)	1
Frequency maintenance (%)	99.97 ('11)	-	99.9 ('94)	2
Transmission loss (%)	3.69 ('11)	5.8 ('11)	4.8 ('11)	1

Source: KPMG result of evaluation of electrical energy'13

Korean Electric Power Status

Annual Power Consumption per capita

International Trend – New Climate Regime

Solution for Challenges : Smart Grid

- Next Generation Power Grid
- Power Grid + ICT
- Nationwide Smart Grid by 2030

Jeju Smart Grid Test Bed Project

Smart Grid Hub Cities

Energy New Industry in KOREA

Eco-Friendly Energy Town

Zero Energy Building

Energy **Independent Island**

Waste Water Utilization

ESS

Source : Committee of Green Growth

ESS for Frequency Regulation

Current State of KEPCO FR Business

- □ Accumulation installation amount of 500MW by 2017
- □ 625 billion(KRW) budget (KEPCO)
- □ Expected effect
 - Reduce in annual average power purchase cost of KEPCO by \$0.35bn
 - Improve the power quality & efficiency by FR

Business plan

	2014	2015	2016	2017	Total
Capacity(MW)	52	184	140	124	500
Budget (100 million)	570	1,900	1,890	1,890	2014

EV Charging Star-Network by KEPCO

□ Star-Network Plan & Fee-charging

Cut the distance between charging infra

	'15	'16
Interval	100km	50km
Sites	40	50

□ Star-Network Plan

	'15	'16	Total
Fast-charging	23	100	123
Slow-charging	105	400	505
Total	128	500	628

□ Fee-charging

- □ Step 1: Charging fee
- □ Step 2: Charging fee + Service fee

EV & Charging Station Plan in Korea

EV and Charging Station Roadmap

(unit : ea)

		2014	2015	2016	2017	2018	2019	2020
EV	per year	1,000	3,000	10,000	30,000	40,000	50,000	64,000
	Total	3,000	6,000	16,000	46,000	86,000	136,000	200,000
Fast Charging	per year	60	100	150	150	193	170	400
	Total	237	337	487	637	830	1,000	1,400
Slow Cl	narging	1,170	2,940	9,800				

□ 1 million EV's by 2030

Confidential - Do Not Distribute COPYRIGHTS © 2016 Korea Electrical Engineering & Science Research Institute. ALL RIGHTS RESERVED.

Seoul National University Campus Microgrid

SNU Campus MG Demonstration Project Overview

- □ Project Budget: 15.7 million USD (Gov. 10.3M, Private 5.4M)
- □ Project Period: 2015. 06 ~ 2019. 05 (for 4 years)

Project Goal

Development of a customized SNU Campus MG model

- 4 hours islanding operation
- 20% peak load reduction and energy cost saving
- Consumer participative energy-saving services

Seoul National University Campus Microgrid

Convergence of Industry and Academic Cooperation

Roles of the Connected Vehicles

- Smart Transportation
- Smart Energy System
- Smart ICT Platform

Roles of EV Connected to Power Network

	Frequency Regulation	Renewable Energy Stabilization	Peak Reduction
Application Method	Over rating : charge Under rating : discharge	Flattening by compensating for unstable output	Light-load : charge Heavy-load : discharge
Content	Charge Ess Charge Nominal Freq. Dis- charge Ess Discharge	Output Daytime Night charge Charge Wind Wind + Battery	Station Capacity Night Generation Capacity Charge Charge Generation Capacity Charge Ch

New Business with EV's

Concept of V2G

Seoul National University V2G

V2G Test Bed in SNU

- Automatic Charge/Discharge System
 - □ 13:00~17:00 → Discharge
 - $\Box \quad 23:00 \sim 06:00 \rightarrow Charge$
 - □ SOC limit : 50%

Local control is possible and prior to automatic control

Confidential - Do Not Distribute COPYRIGHTS © 2016 Korea Electrical Engineering & Science Research Institute. ALL RIGHTS RESERVED.

Seoul National University V2G

- ① Electricity Cost of the Connected Building
 - Price×kWh×η_dch×day
 - Calculated by each season due to different prices.

	Summer	Sprin	g∙Fall	Winter	
Electricity Cost Revenue	133,294 won	137,14	12 won 1	08,756 won	
 2 Annual Peak Reduction 548,800 won/kW*5kW 	on Cost W=2,744,000 won				
 ③ EV Charging Cost <i>Price×kWh</i>×η_ch×d Calculated by each s 	lay eason.	(4) B	attery Life Cos • C_Life×kWh • 71.43won/kW	st × <i>day</i> /h×10kWh×365day	ys=260,714 won
	SI	ummer	Spring•Fall	Winter	
Chargin	g Cost 137	,652 won	133,578 won	121,452 wor	1

Total Revenue (1+2-3-4=2,469,796 won/year

Green Energy Independence Plan in Ulleungdo

Source : kepcos sg biz case and micro grid project in ulleung, KEPCO

Green Energy Independence Plan in Ulleungdo

As is	(MW)		To be(MW) : Step 1('15~17) / Step.2 ('18~20))	
Diesel	Hydro			Diesel	Hydro	WT	PV	Geo- thermal	ESS (MWh)
		5/	Step 1	15.2	0.66	8.0	1.0	0	21
18.5	0.7	V	Step 2	10.5	0.66	8.0	1.0	4.0	36.5

Source : kepco sg biz case and micro grid project in ulleung, KEPCO

Changes Begin from Jeju Island

Overview of Jeju-island

- Power generation
 - □ Conventional Unit: 590MW, Wind: 153.3MW, PV: 48.4MW
- Bidirectional HVDC systems
 - □ HVDC #1 300MW, HVDC #2 400MW

□ Supplying 1 Million EV through 2030

Jeju Carbon Free Island 2030

Goal of Carbon Free Island by the 2030

- **Development of renewable generation**
 - □ All thermal power plants are replaced to renewable energy
- □ Acceleration of EV
 - □ All cars are replaced to electric vehicle (EV)

Jeju Carbon Free Island 2030

Renewable & EV Infrastructure

- Wind, Solar, Fuel Cell
- ESS
- Quick Charger

□ ICT based EV and DG Integrated Management

- **D** Energy management
- □ Energy forecasting
- □ DG control
- **EV** maintenance
- **Charger** maintenance

Global Eco-Platform Jeju

Renewable Energy Plan

		Present	1 st (~2018)	2 nd (2019 ~2020)	3 rd (2021 ~ 2030)
Renewa (Intermitt	ible ence)	210MW	730MW	1,350MW	2,690MW
Fuel C	ell			60MW	520MW
ESS			410MW (670MWh)	670MW (1,010MWh)	1,300MW (1,900MWh)
Ratio of Rer	newable	13%	35% ↑	55% ↑	85~100%
	Private	788	52,000	125,000	309,000
	Taxi	6	1,700	1,700	4,300
EV	Rental	58	2,250	8,200	33,000
	Bus	-	(route) 171	(route) 275	(route) 566 (etc.) 3,000
Total E (ratio	EV))	852 (0.3%)	55,000 (20%)	135,000 (40%)	377,000 (100%)
Fast-char	ging	79	3,100	5,400	150,000

Confidential - Do Not Distribute COPYRIGHTS © 2016 Korea Electrical Engineering & Science Research Institute. ALL RIGHTS RESERVED.

Jeju New Grid

East Asia, Now

North Korea Now

Power Quality

- Rated frequency : 60Hz ± 5%
- Rated voltage : 220V, ± 6%, -13%

- Frequent blackout by facility malfunction, power shortage
- Lifetime-shortening of transmission & distribution facility by low-quality frequency, low power factor

Reunification by connecting Electricity

East Asia super grid

KEPCO is doing WELL

Forbes The World's Biggest Public Companies

	#97	Korea Electric Power	South Korea
	#104	Enel	Italy
IBERDROLA	#139	Iberdrola	Spain
Duke Energy:	#148	Duke Energy	United States
national grid	#160	National Grid	United Kingdom
Exelon.	#191	Exelon	United States
	#212	NextEra Energy	United States

Solution : Convergence

Confidential - Do Not Distribute COPYRIGHTS © 2016 Korea Electrical Engineering & Science Research Institute. ALL RIGHTS RESERVED.

Let's go together

Confidential - Do Not Distribute COPYRIGHTS © 2016 Korea Electrical Engineering & Science Research Institute. ALL RIGHTS RESERVED.